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Abstract—A thin film segment bonded to an elastic half space is modelled. Previous works have
considered membrane models which only take into account the in-plane stiffness of the film and
ignore its bending stiffness. To include bending stiffness, a beam theory is used to model the film.
The beam model caleulations are compared to results from membrane theory. Membrane theory is
found to agree with beam theory for the stiffest films, but the energy release rates (or J-integrals)
are very close for all tilms. However, membrane theory can never give information on the normal
stresses at the interface and consequently on the mode mixity of the loading at the film edge (or
crack tip). To include yielding of the interfuce at the ends of the film, a cohesive zone model is
cmployed. This zone is a shear zone, that is, only tangential slip in the zone is allowed with no
normal opening. The cohesive zone results could be used for determining the interface strengths if
the size of the cohesive zone was measured. Tt was also found that the sign of the normal stress at
the tip ol the cohesive zone depends on the fength of the zone. The structure is loaded by an applicd
uniform compressive strain in the substrate which can also represent a thermal mismatch strain.
The method of solution is to reduce the differential equations for a beam to integral equations
which are then coupled to the singular integral equations for a half space. The standard technique
of expansion in orthogonal polynomials is used. All the integrations required are performed ana-
Iytically. The only numerical procedures are in the solution of a set of linear equations and a root
tinding procedure to determine the cohesive zone size at a given value of the yicld stress.

[. INTRODUCTION

The problem of stiffeners on the surfuce of a half space is not a new one, however with the
growth in the integrated circuits market, interest in the problem has been renewed. Previous
work, such as Erdogan and Gupta (1971), Jiang and Kim (1987), Freund and Hu (1988),
and Erdogan and Joseph (1990), has focused on the membrane model for the thin film. As
will be shown, this model characterizes the shear response of the film quite well in most
cuses, but it does not provide information on the normal stress between the film and the
substrate. For a completely bonded film the shear and normal stresses at the interface are
both singular at the ends of the film. If the problem were to be treated exactly in the theory
of lincar elasticity, the results found would be asymptotically the same as the results given
by Adams and Bogy (1976). They treat the problem of a semi-infinite strip bonded to an
elastic half space. Asymptotically a finite thickness film is not different from a semi-infinite
strip, thus Adams and Bogy's results are expected to apply to the problem at hand for a
region around the corner of the film where it is bonded to the half space. The dimensions
of this region of agreement are much smaller than the thickness of the film. The exact
elasticity results predict stresses at the corners whose singularity depends on the two bi-
matcrial constants of Dundurs (1969). The strength of this singularity is usually less than
0.5. which is the strength encountered for cracks in homogeneous materials. For some cases
of the material parameters, the strength of the singularity is complex and the singularity has
an oscillatory nature. When the strength of the singularity is not 0.5 (or it is complex) the
solution of the integral equations becomes tedious and the interpretation of the results in
the fracture mechanics sense has not been settled. To avoid these problems we will restrict
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our study to the cases where the strength of the singularity is 0.5. In one case this will
restrict the Poisson’s ratio of the substrate to the value of 0.5.

If we treat the thin film as a membrane, that is a layer that has no bending stiffness
and only resists axial extension. then the results obtained must be viewed as a first term in
an expansion of the exact solution. This is because the response of the film is only modelled
using the first term in an expansion in the thickness of the film. The length scale in the
expansion must also be compared to the geometry of the problem and thus the order of the
expansion determines how close to the film edge such a model will yield accurate predictions.
By tuking more terms in this expansion. the model will produce valid results closer to the
edge of the film. Since bending effects dominate near the ends of the film. and we are
interested in the stresses at the ends of the flm to predict failure. we must question the
accuracy of membrane theory in these regions. Clearly beam theory is only one more term
in the expansion and the results we obtain must still be viewed as being applicable only
over distances on the order of the film thickness from the end of the film. The advantage
to this reduction in the accuracy of the solution near the ends of the film is the reduction
in the complexity of the problem and the elimination of the problems encountered when
dealing with the exact elasticity solution.

In this paper we will model a segment of film as a classical elastic beam that is perfectly
bonded to an elastic substrate. A schematic of the configuration we are considering is shown
in Fig. 1. To include nonlinear cffects, a cohesive zone will be introduced at the interface
at the ends of the film. This zone will be a shear type cohesive zone, that is, only tangential
slip will be allowed. The normal stress will be assumed to be perfectly transmitted across
the zone and no vertical separation is permitted. This type of model has been chosen because
of the dominance of the shear mode in the behavior of thin films and because a separable
failure criterion allows the problem o be treated as an almost lincar problem. Coupling
through a failure criterion that involves both stresses would make the problem completely
nonlincar and intractable with the methods employed here. The use of two separate con-
ditions for the shear and normal stresses will be discussed in Section 8. The formulation is
also simplified to the membrane model tn Sccetion 7 to allow comparison between the two
models.
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Fig. 1. The gcometry of the problem under consideration (a) and the sign conventions used for the
beam model (h).
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2. THE FILM MODEL

The thin film layer will be modelled as an elastic beam following Shield (19884). This
model will include the membrane model (no bending stiffness) as a special case. Since
bending effects are included. it is important to use the bottom surface displacements « and
v in the boundary conditions with the surface of the half space.

With the assumption that plane sections remain plane, the vertical displacement at the
central line will be ¢ and the horizontal displacement will be u—hr,/2. The subscript x
indicates a derivative and 4 is the layer thickness. The moment, M. and axial force. F, are
then given by

E i Eh < h )
M= . = - . = = ) 1
M 201 v[)l’ F =D U, — 5t N

-

where E and v are Young's modulus and Poisson’s ratio respectively and the subscripted L
indicates layer (film) quantities. The sign conventions are shown in Fig. I(b). For equi-
librium of the layer:

F
+p =0, Q9= 0. ()

where p and g are the normal and shear tractions on the lower surface of the beam and Q
ts the shear foree in the beam. If we dilferentiate the first of egns (2) to eliminate Q and use
the values (1) for M and F we find that

En (1 h -0
(l—\'ﬁ) 2"\\r—3l\'n\ =p =4

Eh h
S, = —p - = 0. 3
(l-vﬁ)(“"‘ 2Lm> q=0 )

Since we wish to approach this problem in terms of integral equations, (3) must be
transformed into an integral equation. This amounts to finding the Green's functions for
the beam. Since a point load produces a finite displacement at the point of application, the
Green's functions are anticipated to be nonsingular. In fact the Green's functions will turn
out to be polynomials. In the following let

= —3. 4)
L

The problems we will consider are symmetric with respect to x = 0 and the beam extends
for —L € x € L. The ends of the beam are free from tractions. This information will be
uscd in the derivation of the Green's functions. Integrating the first of (3) from 0 to v results
in

h h? x ;
1/1(5 Ny — “3“1‘".‘)-J:’ p(t)dt =0, (9)

where the constant of integration has been omitted since it is zero due to the symmetry of
the problem. The term u., can be eliminated from (5) by using the second of (3) to give
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xh

1 v h
T’AL.""%’J:, p(yde— __-zq =0. (6)

Performing another integration gives

h] X h 4
11—2*('”+J; plt)(x—0dr— EJ; g(0)de+C, =0. )

At x = L both the moment Af and axial force F are zero. In terms of the lower surface
displacements this reduces to ¢, (L) = 0 and « (L) = 0. Evaluating (7) at x = L gives

L II L
C.= —f pO(L—-nyde+ ’J‘ g(1)de. 8)
4] L 4
Equation (7) can be integrated one final time to give
ah’ ' L h{r
l—7~1",+ pO(x+17)2=xn)dt— 5 | g((x—0)di+Cyx = 0. 9)
-~ [} d 0

The surface slope vanishes at v = 0, thus the constant of integration is zero in (9). Since
we are considering a plance strain problem which will be formulated in terms of the x
gradients of the surface displacements, this is the required resuit.

The same procedure for the seccond of eqns (3) using (6) to climinate ¢, in favor of
u gives

Yt S pdr=o (10
—_ . ) = {).
o az/lq+ ), i )
A further integration yiclds
4 v () X
u,— = | q)ydet+ —~ | pt)(x=1)dt+C,; =0, (1
ah Jo ah= Jo

where C, is evaluated using the remaining boundary condition at x = L, thatis, u (L) = 0.
The constant is then found to be

4 L 6 ‘L
BEY T’ - 2
C, i L qlryde 1/1’[, pY(L—1nyde. (12)

Equations (9) and (11) can be rearranged and are

)

12 4 s 6 [ 2
= 2 )2-x - - —3 L 3!
Ue = J:) PO +17)2—xtydi = -y J:) qN(x—ndi+ =5 Cox (13)

and

4 T 6 1Y
u, = iﬁj; q(nydr— e _[) p(x—0)di—-C,. (14)

where C, and C, are given by (8) and (12). It should be noted that this formulation is only
valid for the specific boundary and symmetry conditions used. If other conditions are
desired, the derivation above should be repeated. If the problem is not symmetric an
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additional unknown, the slope at the center of the beam, is introduced. This unknown
would be determined at the same time as the pressure and shear traction distributions.

3. THE HALF SPACE EQUATIONS

The Green's functions for an elastic half space subject to distributed shear and normal
tractions are well known [see Johnson (1985) for example] and are

2 [t ,
_ - qs(’) 1_2‘5
(uz«)\' - 1§7t J_L I——.\‘d - as(l —Vs) ps('v)_eﬂ (15)
and
ST L NS gy Y (16)
(L"""—azf,(l—vs)qs v an ) t—x

where 2, = E,/(1 —v]). The subscript s denotes substrate quantities. The singular integrals
must be evaluated in the principal value sense. The foading for this problem is a uniform
strain in the half space which is represented by &, in (15). Before proceeding to couple these
cquations to (13), it is necessary to determine the characteristic behavior of the set of
equations we are deriving. The characteristic behavior of a singular integral equation is
determined only by the singular terms in the equation [see Muskhelishvili (1953) for
cxample].
The solutions to the cquations we are deriving are of the forms

P =, () (L—x) (x+ L) (17

and
¢.(x) = m (x)(L—x)'(x+ L), (18)

where 7,(x) and 7, (x) are bounded functions of x in [~ L, L}. Later they will be represented
as a sum of orthogonal polynomials, hence the notation. Equations (13) and (14) only
involve the integrals of the pressure and the shear, thus if y is restricted to be greater than
— I these integrals are all bounded at the end points of the interval. The only unbounded
terms come from egns (15) and (16) and they are the only terms that need to be considered
in determining the characteristic behavior of the solutions (17) and (18). Following the
analysis in Chapter 4 of Muskhelishvili (1953) we find that the exponent y must satisfy

b I_2 s :
seot® () + L2 _ o, (19)
(I=v)"
The general solution to this equation is
In(3—-4v,).
y=— 124 M, + —'1—,-——‘-)1, (20)
2n

where A, is an integer. A nonzero imaginary part of y results in an oscillatory solution,
which also occurs in the case of an elastic bi-material interface crack. In interface fracture
mechanics the imaginary term is called the oscillatory index, &. Notice that the oscillatory
index only depends on the Poisson’s ratio of the substrate for this beam analysis. If we wish
to consider only solutions that have non-oscillatory behavior at the ends of the film, that
is 7 real, we must have v, = 1/2, an incompressible substrate. This requirement is removed
when cohesive zones at the ends of the film are considered. The negative values of M, must
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also be ruled out on the physical requirement of bounded total strain energy, that is
integrable singularities in p and ¢.

4. COMPLETELY BONDED CASE

Equations (15) and (16) give the surface displacement gradients of the half space in
terms of the applied tractions distributions. Similarly (13) and (14) relate these quantities
for the beam. The sign conventions for the two sets of equations are such that for the
displacements to be equal we must have

u,=u and v, = —r. 1)
For the tractions to be equal and opposite in sign requires
g.=¢ and p = —p. 22)

Substituting (13), (16). (13) and (14) into (21) and using (22) results in the following set of
equations:

=2y, 2" p( 12 ¢ 2N .
0= --*7:;:- (1(,\)— “J ;:’\_dz' ﬂhi , P(”((\ + ¢ )j.‘."*.\l)df

-

6 J e 2 e (3
+/W | g((x—0)di — i Cix (23)

and

20" g |- 4 (" 6 | .
= — — - =0 di=C* (2
£y n,[ dt (1 - /(\H— fih q(l)dr et P (x=0dt=Ct (29)

(=X

for the tractions on the beam p(x) and g{x). These equations hiave been nondimensionalized
using L as the length scale and a, as the stress scale. The material constant § (which is not
one of the bimaterial constants defined by Dundurs) is given by

pet Bz (25)

The film thickness /t has been replaced by A/L without a change in notation. The non-
dimensional forms of the constants of integration are

1 s
CY= —J P(!)(l—l)dl-[»;J‘ q(1)dt 26)
i} 2 1,
and
4 [ 6 [
Cy= Bﬁh J; q(t) dt— /f/l: j:) ()l — 1) dr. 27)

Since the extent of the bond between the beam and the half space is known in advance, the
tractions must be singular at the ends of the beam. Thus the value of M. in eqn (20) is zero.
The polynomials n(x) are then chosen to be T,{(x) the Chebyshev polynomials of the first
kind because they are orthogonal with respect to the weight function (1 —x? "2 The
problem is symmetric about x = 0 which requires the pressure to be an even function and
the shear to be an odd function. Thus, the expansions for the tractions are
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p(x) = l'_x: Z PaT3n() (28)
and
) N
q(x)=\/l_x:"§0an2n¢l(-“)- (29

Overall equilibrium requires that the resultants of p(x) and g{(x) be zero. This is satisfied
because the n = 0 term in the expansion for p(x) has been omitted and ¢(x) has been chosen
to be an odd function.

Substitution of these expansions into (23) and (24) results in a system of equations:

v

N
—gyg =Y A (X)q.+ Y AV (0p,
=0 1

n n=

N N
0=3Y A} (g, + Y AF0p,. (30)
n=1 n=1
where
4
Af:l(x) = =2V, (x) + /m [A(Z‘n+ l(-\')—/\gnn(l)]- (3
~2v. To(x
A= -T2 \/r'?f‘l - ﬁ‘,", (AL (0~ AL(X) — AL (D). (32)
—V. Jl=x? .
~% T, X
ASI('\.) = l ) '-“ IV-"? l(‘) + 6‘ ['VA‘:’IIP l(-r)—"\gnkl(":)_-‘:/\(;nfI(l)] (33)
l—v, \/l —y B
and

b} 2
AZ(x) = =2Uy, () - /:/'-‘ [%A‘g’,,(.\')-k %/\i,(.v) —.VAQ,,(.\')+,\'/\§,,(I)]. (34)
We have used the integrals given in the Appendix and A%, (1) = 0.

These equations involve 2N + | unknown coeflicients, p, and ¢,. thus we must pick
N+ 1 points y, at which to evaluate eqns (30) in order to find a solution. In Shield (1988b)
a variant of the Erdogan and Gupta method (Erdogan er af., 1973) is derived for a similar
sct of equations and gives the points y, as

k
Vi = COs (5‘3}:7) (35)

Because the problem we are considering has been formutated as a symmetric problem, only
the non-negative values of yy given by (35) need to be used. There are N+ | non-negative
values of . but since we have already used the fact that ¢ (0) = 0, x = 0 substituted into
the second of (30) gives a trivial equation. Thus, the equations to solve arc

N N
—& = Z A (g + Z AP k=1,....N+1
n=10 n=
N

hi
0=3 A3+ Y A (3P k=1.....N, (36)

n=10 na |
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which are 2.V + 1 equations in 2V + | unknowns. These are linear equations in ¢, thus they
only need be solved for one value of this parameter. There are two other parameters that
can be varied independently, f. the stiffness ratio and A, the film thickness. The substrate
Poisson’s ratio is currently restricted to the value of 1 2.

5. OTHER QUANTITIES OF INTEREST

Once the solution for the coefficients in the expansions for the interface tractions has
been determined. several other quantities can be calculated. The axial force. F, in the film
is related to the interface shear through (2), which can be integrated to give

~
1

g(x)du, (37)

3

F(x) =j g(x)dx—

-

where the boundary condition F(1) = 0 has been used. In terms of the expansion (29) this
1S

hi

F(“) = Z (IH[A(.‘)rI#-I(-“)—A?n#l(l)]' (38)
n=0
The axial force needed to produce a strain of —eg, in the layer is £, = —¢fih. Thus if we

divide Fin (38) by fil, it takes on the value of — 1.0 when the axial strain in the layer is equal
to the applied strain in the substrate. The recovery of the axial strain in the layer to the
applicd strain is of interest for determining the length of film required for buckling to occur
at a given loading level.

The relative interface displacements can also be caleulated, taking the origin to have
zero displacement. Substituting the expansions for the interface tractions into (15) and (16)
and then integrating gives

N [=2v, &
u(x) =2 Y ¢,Fa(0)+ ‘—T Y PaAS () —g0x (39)
ne= -V nwl
and
v =2 &
l‘('\-) = -2 Z l)nrlu —l(x)— >I'vﬁ' = Z (IIIA(."IIO' I('\‘)' (40)
n=| Vs na=o

where I and A are given in the Appendix.
The stress intensity factors for the normal and sheur stresses on the intertuce are

l A%
K(l)y=--3% p, (1)

NeEe

and

l Al
Ky(l) = = Z Gn- (42)
\/2n=~|)

These quantitics are related to the J-integral of the problem through
J =n(K{+Kp). (43)

A mode angle. ®. can also be defined for this problem to be
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¢=tan-‘:1-§’l. (44)
t

This gives an angle of n/2 for pure shear mode. Note that the mode angle is determined
by the materials and the geometry, not the loading. which remains constant for these
calculations.

6. INCLUSION OF A SHEAR TYPE COHESIVE ZONE

A simple method of including non-linear effects that occur at the interface is to allow
tangential slippage along the interface. That is, we specify a maximum allowable shear
stress. 7,, on the interface. If the shear stress exceeds this value the condition uy =u is
relaxed in that region and replaced by ¢ = 1,. Examination of the solution to the completely
bonded problem formulated above, which is the limit as r, — o0, shows that the regions
where slippage will occur first are near the ends of the beam. In the bonded problem the
shear s singular at the ends of the beam. Thus the cohesive zone will be assumed to be

|x]ela. L]. 45)

where a is an unknown and must be solved for as part of the solution to the problem. It
will only be possible to solve for a if the region (45) is the correct slippage region for the
problem. To be consistent the shear stress on the interface must be continuous, that is

limg(x) =1,. (46)

T .

This will provide an extra equation needed to solve for a.

Nondimensionalizing this problem in the same manner as above, we let ¢, = t,/a,
and a is replaced by a/L. As above we will make this change without a change in nota-
tion for a.

In Section 3 it was determined that the Poisson's ratio for the substrate must be equal
to 1/2 for the solution to have non-oscillatory singular behavior at the ends of the beam.
This was due to the fact that both of the tractions were singular at the same point. If a
shear cohesive zone exists then the shear traction on the interface is bounded and thus the
analysis of Section 3 must be altered. The result is that (20) still holds for the exponent in
the expansions for p and ¢ but the restriction on v, is removed. For ¢ to be bounded the
choice of M_ is restricted to positive integers, that is, y = 1/2 is the smallest value allowable.
Terms of the form (x+ L)' can be factored into (x+ L){(x+ L)" ', Thus if we change the
definition of the bounded function n,(x) to be (x+ L)(L — x)m,(x) we can use the expansion
(29) for the cohesive zone problem, with the extra condition that the bounded function
must have a zero at the points + . This is the method described below.

As already explained, the sheur traction can be represented by

N

2“'.: e T, X/ X S
([(\} = {a x°) ,,z:,) §a T2y 1(X/0) t\! o - (47)

q, azlx|21

The integrals from 0 to 1 will have to be broken into two integrals of the form:

1 a
J g(») dy=j q(») dy+g.(1 ~a). (48)

n

where the second integral has been performed. Similarly we find
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bg(vdy [ gl dy I—x 4
f g1 dy _ f 4()dy +,,‘_[ln ( I )+ n <+>] )
V=X w VX a—x x+1

for |x| € a. The remaining integrals from 0 to x in (24) only need to be evaluated for | x| € u
because tangential displacement continuity is not enforced in the region ¢ = jx| = | where
slip is allowed to occur.

Replacing the integrals in (23) and (24) with the appropriate integrals of the form (48)
and (49) and using the expansions (28) and (47) we obtain the following set of equations

v v
—e0t+q.Bi(x) = ) A (xa)g.+ Y A (x)p,

n=10 n=1
\% v
q.B:x) =a Y A7 (xa)g.+ Y A7 ()P (50)
n={) n=1
where
A (x/a) = —fEUa(\'/a)+i [AS, ((x/a) =AY, ()] (51)
Sy WY a 2n\- /}II MEISABY) MES! . B
4(l—-a) 2 | —x xX+a
4= e A A o)
Bi(v) fh + 7 l:ln ((l—.\'>+ln (.\‘+ |>:l (32)
and
11(‘)—()“-‘1) ) 53
2(x) = /i/:: . (53)

The remaining coeflicients in (50) are given by (32), (33) and (34). The condition that the
bounded part of the expansion tor ¢ in (47) has a zero at +a s

v

Y ¢, =0. (54)

n =0

This is equivalent to saying that the shear stress intensity factor Ky («) = 0.

In this formulation of the cohesive zone problem there are 2N +2 unknowns: The
2N+ | coctlicients, p, and ¢, and the cohesive zone location a. Equations (50) provide
2N+ 1 equations, the first equation is evaluated at x = ay, for k= 1,.... ¥+, and the
second at x = vy, fork = |,..., N, where yy is given by (35). Equation (54) provides another
cquation for a total of 2N+ 2. These equations are nonlinear in the cohesive zone location
a. thus it is not reasonable to expect a solution to exist for all choices of the parameters &,.
g.. . v, and h. The form of the equations we have derived is 2N + 2 lincar equations in the
2N+ | unknowns p, and ¢,. Thus, these equattons will only have a solution if the following
condition holds,

A" AT —elq,+ B,
det | A A B, =0, (55)
l--1 0---0 0

where the last row of this matrix represents (54). This equation is of the form:
Fla.eofq,; B hv) =0, (56)

where the last three parameters will be taken as fixed for the solution of (36). This will
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allow solution for g at a given ratio of the loading ¢, to the shear strength of the interface,

¢.. A solution to (56) is found by a suitable root finding algorithm as described in Shield

and Bogy (1989). This value is then used in (50) and the coefficients p, and g, are found.
The dissipation in the cohesive zone is given by

I
W, = J 1, (u—u), dx (57)
which can be reduced to
w, .
A q.(Au—Auy), (38)

where Au = w(1) —u(a) and similarly for Au,. Integrating (15) from a to 1 and using the
expansions (28) and (47) gives

\ 2 2 3 2 !
Au, = 27’ (:F—_(|_[I/‘l+(l/a._l)"‘]-(“"+”)+T—tq_ l:ZaIn -t—-+-l jﬁ]
1=2
T =y Zp"/\l.,n(“)—(l—(l)h) (59)
s n=1

Similarly we find

4 a+1 6 X fda* , \ o, \ \
Au = ,(u—- 5 )q,.+ /”’:2:. p,,[ 5 v (() —al;, (a) — 2(/\:,,(I)~A3,,((l))+<lA_»,,(l) .
(60)

The J-integral for the cohesive zone model is

-2 Wp
J=nKi+ L (61)

s

where A is given by (41).

7. MEMBRANE APPROXIMATION

For comparison between beam and membrane models for a thin film, we will also give
the equations for the membrane model here. A membrane can support no normal tractions
and provides no resistance to bending. Thus, the relevant equations are (14) and (15) with
p(x) = 0. This results in the equation

N

4
—&y = Z ‘In[—?-Uzn(x)'*'ﬁh Adsi(x)— A.n+|(|)):]~ (62)

n=0

which is evaluated at x =y, for k=1,... . N+1 to give N+ 1 equations in thec N+1
unknowns ¢,. In this model the material parameters enter the problem only through the
single constant i, The J-integral for the membrane model is

J=nK], (63)

where K, is given by K, of (42). The membrane simplification results in a loss of the phasc
angle information, ®, which is always n/2 for this model.
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X RESULTS

The quantities we have described above will be determined for several cases of the
material and geometrical parameters that describe the problem. The completely bonded
problem is restricted to a substrate of Poisson’s ratio of 1 2. To allow comparison, all the
other calculations will be done for v, =1 2 as well. We will examine cases of the film
thickness to half length ratio 4 of 0.1, 0.05 and 0.01. The relative film stiffness, 8. will take
the values of 1.0. 10.0 and 100.0. This gives nine combinations to calculate that should
display the behaviors of all the quantities adequately. The order of the expansions. V. used
is 10 for the bonded solutions and 20 for the cohesive zone model calculations. The cohesive
zone calculations will be performed at ¢ = 0.80, 0.90. 0.95. 0.98 and 0.99. The loading for
both models is represented by the applied strain to the half space &,. In all the calculations
&y can be taken to be 1.0 without loss in generality because the problems are linear in the
applied strain. In the cohesive zone model the size of the zone depends on ¢, for a unit
applied strain and in general depends on the ratio of 7, to £,%, or ¢, /&,.

The interface stresses p and ¢ are presented in Fig. 2 to show the effect of changing the
modulus ratio. Similar trends are seen at the other film thicknesses. The thicker lines are
the shear stress, ¢, and the thinner lines the pressure p. The pressure is positive in the central
portion of the film and becomes negative near the end. Negative pressure is tension across
the interface. thus not only is the shear stress the largest at the ends of the film but the
interface is also in tension. As the layer gets thinner the region where the pressure is non-
zero becomes smaller and more localized near the ends of the film. The cffects of the bending
stiffness of the beam are scen only near the ends. All of the pressure curves go to — x as
x — |. The bending effects are also largest for the more compliant films. Figure 3 compares
the results of the beam theory calculations with those of membrane theory. A large difference
in the shear stress occurs for the more comphiant case near the ends of the film. Away from
the ends both theories predict similar values of the shear stress.

The axial force in the film is of interest il the possibility of buckling of the film is
considered [as in Shicld ef af. (1991) for example]. Figure 4 gives the axial foree for a fixed
vilue of the modulus ratio. Instead of using L as the length scale the results have been
rescaled so that /s the length scale. This switch allows the results to be presented as if A
were fixed and L varied. This figure shows that the longer the film the higher the axial force
in the center of the film and the lurger the region where the axial foree is lurge. This allows
the length needed for buckling to occur at the center to be calculated. The more compliant
the film the faster the axial force in the film increases and the closer it gets to a value of
- 1.0, which corresponds to the value necessary for the ilm to have an axial strain of —g,,

Figure 5 gives the stress intensity factors K and A versus the film thickness. The shear
stress intensity s positive and the normal or mode I intensity is negative. The dashed curves
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Fig. 2. Beam theory results for the interface shear (thicker curves) and normal (thinner curves)
stresses. The film thickness is 0.05 and f# = 1.0 (solid), 10.0 (dashed) and 100.0 (dot-dashed).
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Fig. 3. Comparison of the shear stress predicted by beam (solid) and membrane (dushed) theories
for & = 0.1 and # = 1.0 (lower curves) and 100.0 (upper curves).

AXIAL FORCE

Fig. 3. Beam theory results for the axial force, rescaled to show the offeet of chunging the fength of
the film. The modulus ratio is 0.0 and L/ = 10.0 solid). 20.0 Glashed) and 1000 (dot-dashed).
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Fig. 5. The stress intensity factors calculated using beam (solid) and membrane (dushed) theorics.
The modulus ratios arc f§ = 1.0 {squares). 10,0 (circies) and 100.0 {triangles).

Beam theory models

P

L~ /]
L o R
_-—”'/
5 e |
L L i I L L 1 1
0
xh

100

T T T T LA S S e e
- -4
bvendhanndundond L A IR TN I W |
.005
FIiLM THICKNESS

(97



1098 T. W, SuieLb and K. S, Kim

6 T T T LI SN S S i
- - T
<
&
Ui L .
—
<
3
0 e 1 hebemnddnd bl
.005 2
FILM THICKNESS

Fig. 6. The J-integral caleulated using beum (solid) and mentbrane (dashed) theeries. The modulus
ratios are fi = 1.0 (squares). 10.0 (circles) and 100.0 (tniangles).

arc the results obtained using membrane theory. The J-integrals for the two models are
compared in Fig. 6. These results should be wdentical because the J-integrals away from the
film corners are the same and thus the contribution at the corners of the film must match.
An important quantity for understanding the behavior of the interface is the mode angle
&, The mode angle is given in Fig. 7. This figure shows that the mode angle is only weakly
dependent on the film thickness and primarily depends on the modulus ratio. The dashed
line in Fig. 7 is the result for a semi-infinite film of modulus ratio 1.0 as found by Freund
(1990) using the same beam theory model as presented here. This line is an asymptote for
the f = 1.0 curve as the film thickness vanishes. The mode angles for the stiffest films are
near /2 which s a pure shear mode and the mode angle of the membrane model. The
results for = 1.0 show nearly equal contributions by the two modes. These results indicate
that the membrane model is most reasonable for the stiffest cases where the mode angle is
almost 7,2,

The results for the cohesive zone model will be presented for the five values of « given
above and four combinations of ff und A. These combinations are given in Table | Figure
8 presents the zone size, | —a, versus the applied stress to yield stress ratio, /g, for the
various cases under consideration. This has the familiar behavior that zero applied stress
produces no yield zone and that the zone size grows with applied stress. Figure 9 shows the
interface stresses for two of the material cases and ¢ = 0.8. Note that the pressure is positive
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Fig. 7. The mode angle caleutated using beam theory. The modulus ratios are ff = 1.0 (squares).
10.0 (circles) and 100.0 (triangles). The dashed line is the result for a semi-infinite film of modulus
ratio 1.0.
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Table 1. Parameters for the cohesive zone model

Symbol B h Bh
Circles 1.0 0.01 0.01
Squares 1.0 0.10 0.10
Inverted triangles 100.0 0.01 1.0
Triangles 100.0 0.10 10.0
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at the tip of the cohesive zone and that it still has a negative singularity at the film end.
This will be examined in greater detail later. As a — | these results approach the results for

the completely bonded case.

The pressure is singular at the film end in the cohesive zone model and the variation
of K, with zone size is given in Fig. 10. The values at a zero zone size are the results from
the completely bonded case. A generally smooth approach is made to the completely bonded
case results. The curve for the case of 4 = 0.1 and f = 100. first shows an increase in the
magnitude of the normal stress intensity factor but for the largest zone size it is beginning
to decrease slightly. The dissipation in the cohesive zone is given in Fig. 11, The greatest
dissipation occurs in the stiffest films. The values of the zone dissipation at zero zone size
are given by K. where K, is the shear stress intensity factor from the completely bonded
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Fig. 8. The zone size versus the applicd to yield stress ratio. The film parumeters that correspond
to the symbols are in Tuble [,
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Fig. 9. The interface stresses for a cohesive zone size of 0.2, for film parameters, h = 0.1, f = 1.0
(solid curves) and 4 = 0.01, # = 100.0 (dashed curves). The thicker curves are the shear stress and
the thinner arc the normal stress.
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Fig. 10. The normal stress intensity factor versus cohesive zone size. The values at zero zone size

are for the completely bonded case. The film parameters that correspond to the symbols are in
Table 1.

case. These curves give a validation of the use of the stress intensity factor to characterize
the encrgy released at an infinitesimal zone (crack) tip. Since the pressure is still singular
the J-integral of eqn (61) can be used to characterize the complete energy for disbonding
at the film edge. This quantity is shown in Fig. 12. This quantity is not constant due to the
finite length of the beam, but it is fairly constant for the more compliant cases.

The failure criterion for the cohesive zone model employed here only takes into account
the magnitude of the shear stress on the interface. A more complicated model using a yicld
criterion that also takes into account the normal stress might be postulated as the next step.
The use of a yickd criterion that involves both the normal and the shear interface stresses
would make the problem completely nonlinear and intractable with the approach used here.
A separate yiekd condition for the pressure of the sanwe form as that used for the shear
could be incorporated using the same solution techniques as presented here. This would
mean that there would be two different (in general) zone sizes. One for the shear yield zone,
w as above, and another, A say, for the pressure yield zone. Thus, following a procedure
similar to that in Section 6 we would find it necessary to solve two cquations of the form
of {55) for the two unknowns « and h. This procedure is possible [sce Shicld and Bogy
(1989)] but is very time consuming and has not been attempted for this problem. We can
get an idea of the effect of including the pressure in the yield criterion by examining the
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Fig.‘ 11, The di..s'sip;nion in the cohesive zonc versus zone size. The values at zero zone size are
7k, where Ay is from the completely bonded calculation, The film parameters that correspond to
the symbols are in Table 1.
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Fig. 12. The J-integral contribution from the cohesive zone versus zone size. The film parameters
that correspond to the symbols are in Table 1.

pressure at x = a. This is presented in Fig. 13. Note that the pressure generally changes
sign from tensile at the zone tip to compressive at some zone size. The curve marked with
the solid circles in Fig. 13 only shows positive values of p(a) but it must become negative
for some values of the zone size smaller than 0.01 because the pressure in all cases at zero
zone size is the completely bonded result of negative infinity. These results indicate that if
pressure were included in the yicld condition, for small zone sizes there would be an increase
in the zone size and above a certain size the zone growth would be retarded by the
compressive pressure at the zone tip. As well as considering the pressure at the zone tip, it
is of interest to consider the phase angle between the value of the shear (¢,) and the pressure
at the tip. These results are given in Fig. 14, Again the values at a zone size of zero are the
results from the completely bonded case. The values are alt ncarly n/2, which shows that
the behavior is dominated by shear in this problem.

Y. CONCLUSION

The results presented here allow the limitations of the membrane model of a thin film
to be determined. For films with large modulus ratios the membrane model agrees well with
the beam model. The lack of normal stress information in the membrane results may affect
the ubility to predict failures across interfaces that are sensitive to normal stresses. For films

PRESSURE AT x =a

ZONE SIZE

Fig. 13. The pressure at the tip of the cohesive zone. p(a), versus the zone size. The film parameters
that correspond to the symbols are in Table 1.
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Fig. 14. The mode angle at the tip of the cohesive zone versus zone size. The values at a zone size
of zero are from the completely bonded calculation. The film parameters that correspond to the
symbols are in Table 1.

whose moduli differ little from the substrate modulus, it is necessary to use at least a beam
theory to determine the interface stresses accurately. The cohesive zone results provide a
method for determining interfacial strengths if the size of the zone can be measured. The
fact that the sign of the normal stress depends on the length of the zone must be taken into
account if the interface strength depends on the normal stress. To model an interface whose
strength depends largely on the normal stress it may be necessary to employ two cohesive
zones. Caleulations for two cohesive zones are possible using the analysis presented here,
however a full parameter study may be very tedious to complete.
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APPENDIX: SOME INTEGRALS OF ORTHOGONAL POLYNOMIALS
Define the symbol A (x) us

nm T g
AT(x) = f YL g, (A1)
0

where T,(») is the Chebyshev polynomial of the first kind. For the case of m = 0 Abramowitz and Stegun (1965)
m equation 22.13.2 gives:
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sin™ ' {x). n=90
nzl

o -
Al = {w,-.(m— 1-x*U,_ (x).n

1103

(A2}

where U, (v) is the Chebyshev polynomial of the second kind. Using integration by parts and other known

integrals, the results for the rest of the values of m can be found. For m = | we found

1=/ 1=x5 n=0
Gsin™ ' (0 —x/ 1= x*)2, n=1

A(x) =

t

- r— il <
—;E\f’ F=xU,_ i (x)+ '—'J; VI=gU,_((ndy. n2

where

i+ DU, (0~ /= {(n+ DU, _y(x) —nxU,(x)}]

: M r . -
j:’ V=¥ Undy = nn+2)

is given by Aramowitz and Stegun (1965) in eqn 22.7.21. For m = 2 we have
(sin~ (v} —x /1 —x%)/2, n=1

AHX) = { —y? —— : .
—n‘~\,/l-.\-~v,_,{x)+f y STVl (»dv. n21
(1]
where

v { X s
. TR S TP A S el () — ’ v
j; y T U3 dy i {"(Hz)\/l U () = (n+ DU, _(x))
nt2
n+l

:T(n+‘.")

fornz landforn = 0
J P =r Ual ) dy = {1 = (1 =x%) 373,

Another required integral is

* 1
r"('r) = J; U,,()') d_l' = ,T;_I [7:' * I‘"‘) - Tn + I(O)I‘

The singular integral required is given by Erdogan er af. (1973) egn (7.96), 1o be

i Mﬁl‘,(y)d’{_‘ B U, (x) jaf €1
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