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Abstract-A thin film segment bonded to an elastic half space is modelled. Previous works have
considered membrane models which only take into account the in-plane stiffness of the film and
ignore its bending stiffness. To include bending stiffness. a beam theory is used to model the film.
The beam model calculations are comp;tred to resulls from membr;tne theory. Membrane theory is
found to agree with be;tm theory for the stiffest films. but the energy release rates (or J-integrals)
arc very close for all til illS. Ilowever. membrane theory can never give informatilln on the nonl1<ll
stresses at the interl;\ce and eonscquently on the mode mi:'lity of the lo;tding at the tilm edge (or
crack lip). To include yiclding of the interface at the ends of the tilm. a cohesive lOne model is
employed. This zone is a shear 7.one. that is. only tangenti;tl slip in the lOne is allowed with no
normal opening. The cohesive zone results could be used for determining the interl;\ce strengths if
the size of the cohesive wne was measured. It was also found that the sign of the normal stress at
the lip of lhe cohesive zone de(lCnds on the length of the lone. The structure is loaded by an applied
uniform compressive strain in the substrate which can also represcnt a thermal mismatch strain.
The method of solution is to reduce the diflcrential equations for a beam to integral equations
which arc then coupled to the singular integral equations for a half space. The stand;1fl1 technique
of e:olpansion in orthogonal polynomials is used. All the integrations required ;lre performed ana­
lytically. The only numerical procedures ;\re in the solution of a set of lincar equations and a root
finding proccdun: to dclermine thc cohcsive wne sizc at a given value of thc yield stress.

I. INTRODUCTION

Thl: problem of stilTl:nl:rs on the surface of a half space is not a nl:w one. however with the
growth in Ihl: intl:gratl:d circuits market. interest in the problem has bl:l:n rl:nl:wl:d. Previous
work. such as Erdogan and Gupta (1971), Jiang and Kim (1987). Freund and Hu (1988).
and Erdogan and Josl:ph (1990), has focused on Ihe membrane modd for the thin film. As
will bl: shown, this modd characterizes the shear response of the film quitl: well in most
casl:s. but it dOl:s not providl: information on the normal strl:ss bl:tween the film and the
substratl:. For a compll:tdy bonded film the shear and normal stresses at the interface are
both singular at thl: ends of the tilm. If the problem were to be treated exactly in the theory
of linear elasticity, the results found would be asymptotically the same as the results given
by Adams and Bogy (1976). They treat the problem of a semi-infinite strip bonded to an
clastic half spacl:. Asymptotically a finite thickness film is not different from a semi-infinite
strip. thus Adams and Bogy's results arc expected to apply to the problem at hand for a
rl:gion around the corner of the film where it is bonded to the half space. The dimensions
of this region of agreement arc much smaller than the thickness of the film. The exact
elasticity results predict stresses .It the corners whose singularity depends on the two bi­
material constants of Dundurs (1969). The strength of this singularity is usually less than
0.5. which is the strength encountered for cracks in homogeneous materials. For some cases
of the material parameters, the strength of the singularity is complex and the singularity has
an oscillatory nature. When the strength of the singularity is not 0.5 (or it is complex) the
solution of the integral equations becomes tedious and the interpretation of the results in
the fracture mechanics sense has not been settled. To avoid these problems we will restrict
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our study to the cases where the strength of the singularity is 0.5. (n one case this will
restrict the Poisson's ratio of the substrate to the value of 0.5.

(f we treat the thin film as a membrane. that is a layer that has no bending stiffness
and only resists axial extension. then the results obtained must be viewed as a first term in
an expansion of the exact solution. This is because the response of the film is only modelled
using the first term in an expansion in the thickness of the film. The length scale in the
expansion must also be compared to the geometry of the problem and thus the order of the
expansion determines how close to the film edge such a model will yield accurate predictions.
By taking more terms in this expansion. the model will produce valid results closer to the
t:dge of the film. Sinct: bending dfects dominatt: near the t:nds of the film. and we are
interested in the stresses at the ends of the film to predict failure. we must question the
accuracy of membrane theory in thest: regions. Clearly beam theory is only one mort: term
in the expansion and the rt:sults we obtain must still bt: vit:wed as being applicable only
ovt:r distanct:s on tht: order of tht: film thicknt:ss from tht: end of tht: film. The advantage
to this reduction in the accuracy of tht: solution nt:ar the ends of tht: film is the rt:duction
in the complexity of the problt:m and tht: elimination of tht: probkms encountered when
dealing with the exact elasticity solution.

(n this paper we will model a segment of film as a classical elastic beam that is perfectly
bonded to an clastic substrate. A schematic of the configuration we are considering is shown
in Fig. I. To include nonlinear ctfects. a cohesive zone will be introduced at the interface
at the ends of the film. This zone will be a shear type cohesive zone. that is. only tangential
slip will be allowed. The normal stress will be assumed to be perfectly transmitted across
the wne and no vertical separation is permitted. This type of model has been chosen because
of the dominance of the shear mode in the behavior of thin films and because a separable
failure lTiterion allows the problem to be treated as an almost linear problem. Coupling
through a failure criterion that involves both stresses would make the problem completely
nonlilH:ar and intractable with the nH.:thods employed here. The use of two separate con­
ditions for the shear and normal stresses will be discussed in Section S. The formulation is
also simplilied to the nH:mbrane model in Section 7 to allow comparison between the two
models.
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1. THE FILM MODEL

The thin film layer will be modelled as an elastic beam following Shield (1988a). This
model will include the membrane model (no bending stiffness) as a special case. Since
bending effects are included. it is important to use the bottom surface displacements II and
L' in the boundary conditions with the surface of the half space.

With the assumption that plane sections remain plane, the vertical displacement at the
central line will be l' and the horizontal displacement will be 11- hl' ,;2. The subscript x
indicates a derivative and II is the layer thickness. The moment, AI. and axial force, F, are
then given by

( I )

where £ and \' are Young's modulus and Poisson's ratio respectively and the subscripted L
indicates layer (film) quantities. The sign conventions are shown in Fig. I(b). For equi­
librium of the layer:

dAI II
--Q--q=O.
dx 2

dQ dF
--+1'=0, ----q=O,
dx dx

(2)

where I' and q arc the normal and shear tractions on the lower surface of the beam and Q
is the shear force in the beam. If we dill'crentiate the lirst ofeqns (2) to eliminate Q and lise
the values (I) for At and F we lind that

E II~ (I It )
I ~,~ ..,11,,,- 3""" -I' = O.( \t.l - -

(3)

Since we wish to approach this problem in terms of integral equations, (3) must be
transformed into an integral equ~ltion. This amounts to finding the Green's functions for
the beam. Since a point 10~ld produces a finite displacement at the point of application, the
Green's functions arc anticipated to be nonsingular. In fact the Green's functions will turn
out to be polynomials. In the following let

El
:t = --,.

I-Vi:
(4)

The problems we will consider arc symmetric with respect to x = 0 and the beam extends
for - L ~ x ~ L. The ends of the beam arc free from tractions. This inform~ltion will be
used in the derivation of the Green's functions. Integrating the first 01'(3) from 0 to x results
III

(
It It~ ) f'

:tit 2/1" - 3"m - In 1'(/) dl = 0, (5)

where the constant of integration has been omitted since it is zero due to the symmetry of
the problem. The term II" can be eliminated from (5) by using the second of (3) to give
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xh ' f' h._\., l" '" + p(t) d t - "' q = O.
- II -

(6)

Performing another integration gives

xh
J

I' hI'-\",1',,+ p(t)(x-t)dt-, q(t)dt+C: = O.
- I) - n

(7)

At x = L both the moment AI and axial force F are zero. [n terms of the lower surface
displacements this reduces to l",,(L) = 0 and II,(L) = O. Evaluating (7) at x = L gives

I
L h ILC: = - p(t)(L-tldt+,. q(t)dt.

(t ~ It

Equation (7) can be integrated one final time to give

'Xh' I' " hI'-I'" 1',+ p(tl«r+r-)/2- x tldt-", q(t)(x-tldt+C:x = O.- " - "

(8)

(9)

The surface slope vanishes at x = 0, thus the constant of integration is zero in (9). Since
we are considering a plane strain problem which will bc formulated in terms of the x
gradients of the surface displacements, this is the required result.

The same procedure for the second of eqns (3) using (6) to eliminate 1'", in favor of
II gives

4 6 f'II" - ,If+,' I'(t)dt = O.
'X / X /' "

A further integration yields

4 f' 6 f'II, -, q(t)dt+ '-,' p(t)(x-t)dt+C~= 0,
Ct/" 'XI'"

( 10)

(\1 )

where C~ is evalu,lted using the remaining boundary condition at x = L, that is. 1I,(L) = O.
The constant is then found to be

4 II. 6 IL
C~ =, If(t)dt- ',' p(t)(L-t)dt.

x/ " X /' "

Equations (9) and (II) can be rearranged and are

12 f' " 6 f' \2l'., = -,.I p(t)«r + r )/2 -xt) dt -',': q(t)(x- t) dt+ -,J C 2X
:x / " ::t / " ::t /

and

4 I' 6 f'II, = ... q(t)dt- "', I'(t)(x-t)dt-C,
:xh 0 ::t'r "

( \2)

( 13)

( 14)

where C 2 and C~ are given by (8) and (12). It should be noted that this formulation is only
valid for the specific boundary and symmetry conditions used. If other conditions are
desired. the derivation above should be repeated. If the problem is not symmetric an
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additional unknown, the slope at the center of the beam, is introduced. This unknown
would be determined at the same time as the pressure and shear traction distributions.

3. THE HALF SPACE EQUATIONS

The Green's functions for an elastic half space subject to distributed shear and normal
tractions are well known [see Johnson (1985) for example] and are

and

2 fL q,(/) I-21's
(II,), = -. -d/- (I ) p,(x) -/;0

:X,1! _ L I - x :x, - v,

1-21', 2 fL p,(/)
(l',),= (I )q,(x)+- --d/.

:x, -v, :Xs1! -L (-x

( 15)

( 16)

where :x, = Ej( 1- \';). The subscript s denotes substrate quantities. The singular integrals
must be evaluated in the principal value sense. The loading for this problem is a uniform
strain in the half space which is represented by f.o in (15). Before proceeding to couple these
equations to (13). it is necessary to determine the characteristic behavior of the set of
equations we are deriving. The characteristic behavior of a singular integral equation is
determined only by the singular terms in the equation [sec Muskhclishvili (1953) for
example).

The solutions to the equations we arc deriving arc of the forms

and

p,(X) = 1!,.(x)(L-x)"(x+L)"

q,(X) = 1!.,(x)(L-x)i'(x+L)".

( 17)

( 18)

where 1!,.(x) and 1!,,(x) arc bounded functions of x in [ - L, L]. Later they will be represented
as a sum of orthogonal polynomials, hence the notation. Equations (13) and (14) only
involve the integrals of the pressure and the shear. thus if y is restricted to be greater than
- I these integrals arc all bounded at the end points of the interval. The only unbounded
terms come from eqns (15) and (16) and they are the only terms that need to be considered
in determining the characteristic behavior of the solutions (17) and (18). Following the
analysis in Chapter 4 of Muskhclishvili (1953) we find that the exponent}' must satisfy

, (1-2vY
4cot- (1!"') + ----- = 0, (l-vY .

The general solution to this equation is

In(3-4v)
i' = -1/2+M.. + --.,--~i.

, _1!

( 19)

(20)

where AI;. is an integer. A nonzero imaginary part of y results in an oscillatory solution,
which also occurs in the case of an elastic bi-material interface crack. In interface fracture
mechanics the imaginary term is called the oscillatory index, e. Notice that the oscillatory
index only depends on the Poisson's ratio of the substrate for this beam analysis. [fwe wish
to consider only solutions that have non-oscillatory behavior at the ends of the film. that
is"i reat. we must have \\ = 1/2, an incompressible substrate. This requirement is removed
when cohesive zones at the ends of the film are considered. The negative values of My must
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also be ruled out on the physical requirement of bounded total strain energy, that is
integrable singularities in p and q.

4. COMPLETElY BO:--iDED CASE

Equations (15) and (16) give the surface displacement gradients of the half space in
terms of the applied tractions distributions. Similarly (13) and (14) relate these quantities
for the beam, The sign conventions for the two sets of equations are such that for the
displacements to be equal we must have

II, = II and t\ = -c.

For the tractions to be equal and opposite in sign requires

ii, = q and p, = - p.

(21 )

(22)

Substituting (15). (16). (13) and (14) into (21) and using (22) results in the following set of
equations:

1-21', 2 fl per) 12 f' ..0= "_,---q(.'1:)- ---d/-', 1'(/)«.\" +1")/2-x1) dl
(I - I") 1t .. I 1- X {III n

6 f\ 12
+ (11t~ "q(t)(x - t) dl - (Ihl C!x (23)

and

"fl q(/) 1- "" 4 f\ 6 f'-/;,,=-- ,d/-(I -'p(X)+{J! il(t)d/-{I/~ I'(t)(x-/)d/-Ct (24)
n 1/-.\ -v,) II" II "

for the tractions on the beam I'(x) and q(x). These equations have becn nondimensionalil.cd
using L as the length scale and ~, as the stress scale. The material constant IJ (which is not
one of the bimaterial constants defined by Dundurs) is given by

(25)

The film thickness" has been replaced by It/L without a change in notation, The non·
dimensional forms of the constants of integr:ltion arc

and

C! = - fl I'(t)( I - I) dt + ~ (I q(t) df
lJ - JIl

4 JI 6 IIC! = -. q(t) d/-···.. 1'(1)( I - I) df.
{lit II (lir II

(26)

(27)

Since the extent of the bond between the beam and the half space is known in advance. the
tractions must be singular at the ends of the beam. Thus the value of M;. in eqn (20) is zero.
The polynomials n(x) are then chosen to be T,,(x) the Chebyshev polynomials of the first
kind because they are orthogonal with respect to the weight function (I - x 2) - If!. The
problem is symmetric about x = 0 which requires the pressure to be an even function and
the shear to be an odd function. Thus. the expansions for the tractions are
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(28)

(29)

Overall equilibrium requires that the resultants of p(x) and q(x) be zero. This is satisfied
because the n = 0 term in the expansion for p(x) has been omitted and q(x) has been chosen
to be an odd function.

Substitution of these expansions into (23) and (24) results in a system of equations:

where

and

'I 'I

"II "1~-to = L... An (x)qn+ L... An (x)Pn
n= 0 n= 1

N ,'I

0= L: A,;I(X)qn+ L A';~(.'()Pn.
If= n n= I

(30)

(31 )

(32)

(33)

(34)

We have used the integrals given in the Appendix and A~n(l) = 0,
These equations involve 2N+ I unknown coemcients. Pn and q". thus we must pick

N + I points Yk at which to evaluate eqns (30) in order to find a solution. In Shield (1988b)
a variant of the Erdogan and Gupta method (Erdogan el al.• 1973) is derived for a similar
set of equations and gives the points Yk as

(35)

Because the problem we are considering h.1S been formulated as a symmetric problem. only
the non-negative values of Yk given by (35) need to be used. There arc N + I non-negative
values of J'k. but since we have already used the fact that 1',(0) = O. X = 0 substituted into
the second of (30) gives a trivial equation. Thus. the equations to solve arc

N N

-f.o = L A~I(Yk)qn+ L A~~(Yk)Pn. k = I ... .. N+ I
,. .. 0 ,,--I

N N

0= L A;I(ydq,,+ L A;~(Yk)Pn. k = 1. .... N.
11= 0 It'"' I

(36)
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which are '2.Y+ I equations in 2N+ I unknowns. These are linear equations in £" thus they
only need be solved for one value of this parameter. There are two other parameters that
can be varied independently. p. the stiffness ratio and h. the film thickness. The substrate
Poisson's ratio is currently restricted to the value of I .,

5. OTHER QUANTITIES OF INTEREST

Once the solution for the coefficients in the expansions for the interface tractions has
been determined. several other quantities can be calculated. The axial force. F. in the film
is related to the interface shear through ('2). which can be integrated to give

f' 1'1F(x) = q(x) dx - q(x) dx.
o .. 0

(37)

where the boundary condition F( I) = 0 has been used. In terms of the expansion ('29) this
IS

N

F(x) = I qn[i\~n+,(x)-i\~,,+,(I)l·
n"'" 0

(38)

The axial force needed to produce a strain of - En in the layer is Fn = - co/Ih. Thus if we
divide Fin (38) by /II1. it takes on the value of - 1.0 when the axial strain in the layer is equal
to the applied strain in the substrate. The recovery of the axial strain in the layer to the
applied strain is of interest for determining the length of film required for buckling to occur
at a given loading level.

The relative interface displacements can also be calculated. taking the origin to have
zero disphtcement. Substituting the expansions for the interface tractions into (15) and (16)
and then integrating gives:

(39)

and

(40)

where rand i\ are given in the Appendix.
The stress intensity 1~lctors for the normal and shear stresses on the interl~lce arc

(41 )

and

(4'2)

These quantities arc related to the J-integral of the problem through

(43)

A mode angle. (I>. can also be defined for this problem to be
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(44)

This gives an angle of TC!2 for pure shear mode. Note that the mode angle is determined
by the materials and the geometry, not the loading. which remains constant for these
calculations.

6. INCLUSION OF A SHEAR TYPE COHESIVE ZONE

A simple method of including non-linear effects that occur at the interface is to allow
tangential slippage along the interface. That is. we specify a maximum allowable shear
stress. r,_. on the interface. If the shear stress exceeds this value the condition Ii, = Ii is
relaxed in that region and replaced by q = r,. Examination of the solution to the completely
bonded problem formulated above, which is the limit as r,o -+ 00. shows that the regions
where slippage will occur first are near the ends of the beam. In the bonded problem the
shear is singular.1t the ends of the beam. Thus the cohesive zone will be assumed to be

Ixl E [a. L]. (45)

where a is an unknown and must be solved for as part of the solution to the problem. It
will only be possible to solve for (I if the region (45) is the correct slippage region for the
problem. To be consistent the shear stress on the interface must be continuous, that is

lim q(x) :::: r ,.
t "'d

(46)

This will provide an extra equation nceded to solve for a.
Nondimensionalizing this problem in the same manner as above, we let q.. = t ..la.,

and tl is replaced by aiL. As ubove we will muke this chunge without a change in nota­
tion for a.

In Section 3 it was determined that the Poisson's TUtio for the substrate must be equal
to 1/2 for the solution to huve non-oscillatory singulur behuvior at the ends of the beam.
This was due to the fuct that both of the tractions were singular at the same point. If a
shear cohesive zone exists then the sheur traction on the interface is bounded and thus the
anulysis of Section 3 must be altered. The result is thut (20) still holds for the exponent in
the expunsions for f1 and q but the restriction on v, is removed. For q to be bounded the
choice of M; is restricted to positive integers, thut is, )' :::: 112 is the smullest value allowable.
Terms of the form (x+ LY can be factored into (x+ L)(x+ LY' '. Thus if we change the
definition of the bounded function TCq(X) to be (x+ LHL -X)TCq(X) we can use the expansion
(29) for the cohesive zone problem, with the extra condition that the bounded function
must have a zero at the points ±a. This is the method described below.

As ulready explained, the sheur traction cun be represented by

( .) _ {(a1
_X

1) I ~ t qnT1nt-,(x/a) Ixl ~ a
q.\ - n_O

q,_ a~lxl~1

The integrals from 0 to I will have to be broken into two integruls of the form:

r' r"Jo q(y)dy = JIl q(y)dy+q,(I-a),

where the second integral has been performed. Similuriy we find

(47)

(48)
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(-l9)

for Ixl ~ a. The remaining integrals from 0 to x in (24) only need to be evaluated for Ixl ~ a

because tangential displacement continuity is not enforced in the region a ;;?: Ixl ;;?: I where
slip is allowed to occur.

Replacing the integrals in (13) and (24) with the appropriate integrals of the form (48)
and (9) and using the expansions (28) and (47) we obtain the following set of equations

v

-CO+qrBI(x) =' L A~I(x/a)"n+ L A~2(X)p"
n=O n=1

where

and

v ,v

Qr B2(X) =' (/ L A;I(x/a)q,,+ L A;2(X)p".
n=O n=1

4(I-a) 2 [(I-X) (x+a)]B I (x) = . + In· .. + In ..... - .
1$11 rr a - x x + I

6( I-a)
1J 2(x) = 1$1,2 X.

(50)

(51 )

(52)

(53)

The remaining codlkients in (50) arc givcn by (32). (33) and (34). The condition that the
bounded part of the expansion for q in (47) has a zero at ±a is

.V

L 'I" = O.
fI -" 0

(54)

This is equivalent to saying that the shear stress intensity factor KII(a) = O.
In this formulation of the cohesive zone problem there are 2N+2 unknowns: The

2N+ I coetlicients. fI" and q" and the cohesive zone location a. Equations (50) provide
2N+ I equations. the lIrst equation is evaluated at x = aYk for k = I..... N + I. and the
second at x = Yk for k =' I..... N. where Yk is given by (35). t:quation (54) provides another
equation for a total of 2N+ 2. These equations arc nonlinear in the cohesive zone location
iI. thus it is not reasonable to expect a solution to exist for all choices of the parameters 1:0.

If,. II. I', and h. The form of the equations we have derived is 2N+2 linear equations in the
2.V + \ unknowns fI" and q.,. Thus. these equations will only have a solution if the following
condition holds.

[

All

det A 21

1.. ·\ 0·· ·0

(55)

where the last row of this matrix represents (54). This equation is of the form:

F(a. r.o/q I' ; fl. h. I',) = O. (56)

where the last three parameters will be taken as fixed for the solution of (56). This will
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allow solution for a at a given ratio of the loading &0 to the shear strength of the interface.
q \__ A solution to (56) is found by a suitable root finding algorithm as described in Shield
and Bogy (1989). This value is then used in (50) and the coefficients P. and qn are found.

The dissipation in the cohesive zone is given by

which can be reduced to

~v
-LP = q ..(&11- &11,).
':x, .

(57)

(58)

where &11 = II( I) -1I(a) and similarly for &11,. Integrating (15) from a to 1 and using the
expansions (28) and (47) gives

A ., ~ q. , l' (' + I) 2 [ I +a I +aJulI, = - _ L. 1---~-(I - [1/lI+ (I/a" -I) _J-.n ) +-q. 2l11n --.,- +21n -~-
.~Il(_N+I) 1t. _lI _

I -2v, ;. II
- --I- L. Pn!\Zn(a) - (I - cz)l:".

-v, It- I

Similarly we lind

(59)

_ 4 ( (/! + I) (,;.. [lI! () 1 I! ! 1 ]
1'.1/ - lilt a- 2 '1.+ lilt! ."::'1 p" 2 !\!n(a)-a!\Zn(a)- 2(!\!n(I)-!\!,,(a»+w\!,,(I) -

(flO)

The J-integral for the cohesive zone model is

., WpJ = 1tKi + ---.
~.L

where 1\1 is given by (41).

7. MEMBRANE APPROXIMATION

(61 )

For comparison between beam and membrane models for a thin film. we will also give
the elluations for the membrane model here. A membrane can support no normal tractions
and provides no resistance to bending. Thus. the relevant equations arc (14) and (15) with
pIx) = O. This results in the equation

(62)

which is evalu.tted at x =}'k for k = I•.... N + I to give N + I equations in the N + I
unknowns "•. In this model the material parameters enter the problem only through the
single constant IIh. The J-integral for the membrane model is

(63)

where K, is given by KII of (42). The membrane simplification results in a loss of the phase
angle information. ((). which is always 7[/2 for this model.
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Ii RESLLTS

Th~ quantiti~s we have described above will b~ determined for several cases of the
material and geom~trical parameters that d~scribe th~ probl~m. The completely bonded
problem is restrict~d to a substrate of Poisson's ratio of I 2. To allow comparison. all the
other calculations will b~ don~ for \', = I 2 as well. We will examine cas~s of the film
thickness to half length ratio h of 0.1. 0.05 and 0.0 I. The relative film stiffness. {l. will take
the values of 1.0. 10.0 and 100.0. This gi\l;~s nin~ combinations to calculate that should
display the behaviors of all the quantities adequately. The order of the ~xpansions. N. used
is 10 for the bonded solutions and 20 for the cohesive zone model calculations. The cohesive
zon~ calculations will be p~rform~d at a = 0.80. 0.90. 0.95. 0.98 and 0.99. The loading for
both models is represented by the applied strain to the half space I:". In all the calculations
Ln can be taken to be 1.0 without loss in generality b~cause th~ probkms are lin~ar in th~

applied strain. In the coh~sive zone mod~1 the siz~ of the zone depends on q, for a unit
applied strain and in general depends on the ratio of r, to 1:,,1, or (/,i l :".

The interl~lce stresses f1 and (/ are presented in Fig. 2 to show the effect of changing the
modulus ratio. Similar trends are seen at the other film thicknesses. The thicker lines are
the shear stress. (/. and the thinner lines the pressure p. The pressun: is positive in the central
portion of the film and becomes negative near the end. Negative pressure is tension across
the interf~lee. thus not only is the shear stress the largest at the ends of the film but the
interl~lce is also in tension. As the layer gets thinner the region where the pressure is non­
zero becomes smaller and more localized ncar the ends of the 111m. The ell"ccts of the bending
stiffness of the beam are seen only near the ends. All of the pressure curves go to - 'f~ as
x -+ I. The bending ell"cds are also largest for the more compliant lilms. Figure J compares
the results of the beam theory calculations with those of membrane theory. A large difrerem:e
in the shear stress occurs for the more compliant case near the ends of the lilm. Away from
the ends both theories predict similar values of the shear stn:ss.

The axial force in the 111m is of interest if the possibility of buckling of the film is
considered [as in Shield e( al. (llJlJ I) for examplel. Figure 4 gives the axial force for a fixed
value of the modulus ratio. Instead of using L as the length scale the results have been
rescaled so that II is the length scale. This switch allows the results to be presented as if h
were fixed and L varied. This figure shows that the longer the 111m the higher the axial force
in the center of the film and the larger the region where the axial force is large. This allows
the length needed for buckling to occur at the center to be calculated. The more compliant
the film the t~lster the axial force in the film increases and the closer it gets to a value of
- 1.0. which corresponds to the value necessary for the lilm to have an axial strain of -I:".

Figure 5 gives the stress intensity factors 1\1 and 1\11 versus the film thickness. The shear
stress intensity is positive and the normal or mode I intensity is negative. The dashed curws

2

-1
o

xJL

Fig. 2. Beam theory results for the inlerface shear (lhicker curves) and normal (thinner curves)
stresses. The tilm thickness is n.OS and II = I.ll (solid). 10.0 (dashed) ami 100.0 (dOl-dashed).



Fig. 3. Comparison of the shear stress predicted by beam (solid) and membrane (dashed) theories
for It = 0.1 and fJ = 1.0 (lower curves) and 100.0 (upper curves).
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Fig. 4. Ikam theory results for Ihe axial force. reseak'd to show the clfcel of changing the length of
the lihn. The modulus fillio is W.O il1ld l.11t = W.O (solid), 20.0 (dash~'<I) and ltlO.lJ (dot·dashed).
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Fig. S. The stress intensity factors calculated using hcam (solid) and membrane (dashedl theories.
The modulus ratios arc {I = 1.0 (squares). 10.0 (cirdcs) and 100.0 (tri'lIIglesl.
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Fig. 6. Th<: J-int<:gral cakulal<:d using beam (solid) amI m.:mbran.: (dash.:dlth<:ori.:s. Th.: modulus
ratios an: {i = 1.0 (squar.:sl. !O.O (circks) and 100.0 (triangl.:s).

are the results obtained using membrane theory. The J-integrals for the two models are
compared in Fig. 6. These results should be identical because the J-integrals away from the
film corners are the same and thus the contribution at the corners of the film must match.
An important quantity for understanding the behavior of the interf(tce is the mode angle
(II. The mode angle is given in Fig. 7. This figure shows that the mode angle is only weakly
dependent on the film thidness and primarily depends on the modulus ratio. The dashed
line in Fig. 7 is the result for a semi-infinite film of modulus ratio 1.0 as found by Freund
(1990) using the same beam theory model as presented here. This line is an asymptote for
the /1 = I.n curve as the film thickness vanishes. The mode angles for the stifrest films are
near It/2 which is a pure shear mode and the mode angle of the membrane model. The
results for /1 = 1.0 show nearly equal contributions by the two modes. These results indic,lte
that the membrane model is most reasonable for the stilrest cases where the mode angle is
almost It,2.

The results for the cohesive lOne model will be presented for the five values of tI given
above and four clllllbinations of /1 ,Ind h. These combinations arc given in Table I. Figure
S prescnts thc lonc Si/C, I -tl, vcrsus thc applied stress to yield stress ratio, I/el" for the
various cases under consideration. This has the familiar behavior that zero applied stress
produces no yield zone and that the zone size grows with applied stress. Figure 9 shows the
intcrface stresscs for two orthe material cases and tI = 0.8. Note that the pressure is positive
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Fig. 7. Th<: mod.: angk calculat.:d using b.:am Ih.:ory. Th.: modulus ratios ar.: {i = 1.0 (squares).
10.0 (circks) and 100.0 (triangksl. Th<: uash.:d lin.: is Ih.: result for a semi-infinite film of modulus

ratio 1.0.
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Table I. Parameters for the cohesive lone modd

Symbol fJ h fJh

Circles 1.0 0.01 0.01
Squares 1.0 0.10 0.10
Inverted triangles 100.0 0.01 1.0
Triangles 100.0 0.10 10.0

1(l<N

at the tip of the cohesive zone and that it still has a negative singularity at the film end.
This will be examined in greater detail later. As a -+ I these results approach the results fl)r
the completely bonded case.

The pressure is singular at the film end in the cohesive zone model and the variation
of K, with zone size is given in Fig. 10. The values at a zero zone size are the results from
the completely bonded case. A generally smooth approach is made to the completely bonded
case results. The curve for the case of II = 0.1 and /J = 100. first shows an increase in the
magnitude of the normal stress intensity factor but for the largest zone size it is beginning
to decrease slightly. The dissip'ltion in the cohesive zone is given in Fig. II. The grealest
dissipation occurs in the stitTest films. The values of the zone dissipation at zero zone size
are given by Tr Kil' where K" is the shear slress inlensity factor from the completely bonded

.25

W
Nen
w

~
N

o
o
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Fig. ll. The zone size versus the applied to yield stress ratio. The lilm paramders that eorresplllld
to the symhols are in Tahle I.
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Fig. 9. Thc interface stresses for a cohesive zone size of 0.2. for film parameters, " = 0.1. {I = 1.0
(solid curves) and II = 0.01. {I = 100.0 (dashed curves). The thicker curves are the shear stress and

the thinner are the normal stress.
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Fig. 10. The normal stress intensity factor versus cohesive zone size. The values al zero zone size
arc for the completely bllnded caSt:. The film parameters that correspond to the symbols are in

Table I.

case. These curves give a validation of the usc of the stress intensity factor to characterize
the energy rekased at an infinitesimal Wilt.: (crack) tip. Since the pressure is still singular
the J-integral of eqn (61) can be used to characterize the complete energy for disbonding
at the film edge. This quantity is shown in Fig. 12. This quantity is not constant due to the
linill: kngth of the beam. but it is fairly constant for the more compliant cases.

The failure criterion for the eohesive zone model employed here only takes into 'H:count
the magnitude of the shear strcss on the interl~l(:e. /\ more complicated model using a yield
critcrion that also takes into account the normal stress might be postulated as the next step.
The use of a yield criterion that involves ooth the normal and thc shear interf~H:e stresses
would make the problem completely nonlinear and intractable with the approach lIsed here.
A separate yield condition for the: pressure of the same form as that used for the: shear
could be incorporated using the same solution tel.:hniques as presented here. This would
mean that there would be two different (in general) zone: sizes. One: for the shear yicld zone.
II as above. and another. h say. for the pressure: yield zone:. Thus. following a procedure
similar to that in Sel.:tion 6 we would find it ne:ccssary to solve two equations of the form
of (55) for the two unknowns (/ and h. This prol.:edure is possible (sec Shield and Bogy
(1989)] but is very time consuming and has not been attempted for this problem. We can
get an idea of the ellcct of including the pre:ssurc in the yield criterion by cxmnining the
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Fig. 11. The dissipation in thc cohesive zone versus zone size. The valucs at lero zone size arc
ttl\,;. whefe 1\" is from the completely bond~-d calculation. The lilm par;tmcters that eorrcspond to

thc symbols afC in Table 1.
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Fig. I'::. The l-integral contribution from the cohesive zone versus zone size. The film parameters
that correspond to the symbols are in Table I.

pressure at x = a. This is presented in Fig. 13. Note that the pressure generally changes
sign from tensile at the zone tip to compressive at some zone size. The curve marked with
the solid circles in Fig. 13 only shows positive values of p(a) but it must become negative
for some values of the zone size smaller than 0.0 I because the pressure in all cases at zero
zone size is the completely bonded result of negative infinity. These results indicate that if
pressure were included in the yield condition. for small zone sizes there would be an incre.lse
in the zone size and ahove .1 certain size the zone growth would be retarded by the
compressive pressure at the zone tip. As well as considering the pressure at the zone tip. it
is of interest to consider the phase angle between the value of the sheur (if,.) and the pressure
at the tip. These results are given in Fig. 14. Again the values at a zone size of zero are the
results from the completely honded case. The values are .111 nearly rr/2. which shows that
the hehavior is dominated hy shear in this prohlem.

'.I, CONCLUSION

The results pn:sented here allow the limitations of the membrane model of a thin film
to be determined. For films with large modulus r'ltios the membrane model agrees well with
the beam model. The lack of normal stress information in the membrune results may affect
the ability to predict failures across interfaces that are sensitive to normal stresses. For films

o .25

ZONE SIZE

Fig. 13. The pressure at the tip of the cohesive zone. pea). versus the zone sizc. The film paramcters
that correspond to the symbols arc in Table I,
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Fig. I·t The mode angle at the tip of the cohesive zone versus zone size. The values at a zone size
l,f lero arc from the completely bonded calculation. The film parameters that correspond to the

symbols arc in Table I.

whose moduli differ little from the substrate modulus. it is necessary to usc at least a beam
theory to determine the interface stresses accurately. The cohesive zone results provide a
method for determining interfacial strengths if the size of the lOne can be measured. The
fact that the sign of the norm.1I stress depends on the length of the zone must be taken into
account if the interface strength depends on the normal stress. To model an interface whose
strength depends largely on the normal stress it may be necessary to employ two cohesive
IOnes. Cakulations for two cohesive zones are possible using the analysis presented here.
however a full parameter study may be wry tedious to complete.
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API)ENDIX: SOME I:"TEGRALS OF ORTHOGONAL POLYNOMIALS

Deline the symbol A~·(.~) as

A:'(X)=f,'.I::~~l~dl" (AI)
"JI-y: .

where T.( y) is the Chehyshev polynomial of the first kind. For the case of", =' 0 Abramowitz and Stegun (191i5)
in equation 2~.13.2 gives:
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{
Sin-' (xl.

A~(.t)=, : I
[Li •. ,(O)-,.JI"=?L._ I (.t)ln.

11=0

n~1

1103

(A2)

where t".l.t) is the Chebyshev polynomial of the second kind. Using integration by parts and other known
integrals. the results for the rest of the values of m can be found. For m = 1we found

{
I_"/~'

, (sin-I (xl-x,,/I-.t:);2.
A. (x) =

-x ;--. I' .
- :1-rU (t)+_C It-I"'U (I')dl"n ,.. . ,.- I . nJo" . ,,- I. . ..

where

11=0

11=1
(A3)

is given by Aramowitz and Stegun (1965) in eqn 22,7,21. For m = 2 we have

where

f' I" /j--I":U (I')UI" = -~-- {~'\'-" fl-x:(nxU 1.\')-(11+ t)U (x))J.. ' v . ." I 11(11+2)'11 • .-1

1+---··
,,+2

n=1

1I~1
(A5)

Another rClfuired integral is

f,' 1
r.(.t) = U.(y)lIy = --I [1~,,(x)-T.. ,(O)I·

u n+

The singulM integral relfuired is given hy Erllog'ln "t /II, (1973) elfn (7.96). to he

(A7)

(All)

(A9)


